黄礼刚,博士,副教授,博士/硕士生导师,OSA会员
个人简历
2006-2010年:南开大学 物理学专业 本科;
2011-2016年:南开大学 物理学专业 博士;
2016-2020年:bat365在线登录网站讲师,硕士生导师,重庆市“博新计划”博士后;
2020年-至今:bat365在线登录网站副教授,博士生导师;
研究方向
主要从事激光调控及测量技术研究:
(1)在激光调控技术方面,研究超窄线宽激光器线宽压缩、频率稳定和波长调谐的基本模型、核心器件以及系统优化;激光调控器件方面的研究,包括高品质因子回音壁微腔和大范围、快速可调在纤式声光器件。
(2)在激光测量技术方面,研究激光线宽、相位噪声、频率噪声以及调谐参量等激光核心参数在稳态和动态条件下的高精度、快速和实时测量技术,在激光测量技术的基础上同时研究激光谐振腔的超快和超窄激光动力学过程。
(3)在高速光谱测量技术方面,基于声光效应实现光纤波导和片上波导的动态模式转换,从而构建快扫描速度、大波长范围的集成式、阵列化可调滤波器,结合线阵光电探测器和单像素光电探测器,实现高速光谱测量技术,并应用于激光动力学表征与光谱成像。
承担项目及研究成果
主持国家自然科学基金面上项目、青年基金项目、装备预研领域基金项目、首届重庆市“博士后创新人才支持计划”项目、重庆市基础研究与前沿探索项目、中央高校基本科研业务费国防创新专项、企业横向等项目10余项,在Opto-Electronic Advances、Photonics Research、Journal of Lightwave Technology、Optics & Laser Technology、Optics Letters和Optics Express等期刊上发表SCI论文70余篇,被引用900余次,其中通信或第一作者20余篇,并申请发明专利10余项。探索了可调谐激光器的线宽压缩技术和参数测量方法,利用全光纤声光可调谐滤波器,获得切换时间小于1毫秒、调谐范围超过100nm的大波长范围可调谐窄线宽光纤激光器;对于扫频激光器,提出了瞬态频率噪声和线宽的测量方法,基于分数傅里叶变换将扫频激光按照啁啾信号进行能量分解,实现了对高速扫频激光本征线宽的精确测量。担任Light: Sci. & Appl.、Photonics Research、Optics Express等期刊的审稿人,在国内外学术会议上做特邀报告10余次。承担《激光测量技术》、《光电检测技术》和《精密测试与计量技术》等本科生与研究生教学工作。
代表性论文:
(1) T. Lan, C. Zhang, L. G. Huang*, L. Dang, T. Guan, L. Gao, W. Huang, L. Shi, G. Yin, and T. Zhu*, "Dynamic intrinsic spectrum reconstruction of narrow-linewidth laser based on band-extended frequency noise," Optics & Laser Technology 163, 109367 (2023).
(2) L. Dang#, L. G. Huang#, L. Shi#, F. Li, G. Yin, L. Gao, T. Lan, Y. Li, L. Jiang, and T. Zhu*, "Ultra-high spectral purity laser derived from weak external distributed perturbation," Opto-Electronic Advances 6, 210149 (2023).
(3) Y. J. Li, L. Y. Dang, L. G. Huang*, T. Y. Lan, H. N. Han, L. Gao, Y. L. Cao, F. H. Li, L. D. Jiang, G. L. Yin, P. I. Iroegbu, and T. Zhu*, "Tunable narrow-linewidth fiber laser based on the acoustically controlled polarization conversion in dispersion compensation fiber," Journal of Lightwave Technology 40, 2971-2979 (2022).
(4) Y. Li, L. Dang, L. G. Huang*, Y. Cao, B. Zheng, P. I. Iroegbu, T. Lan, L. Shi, L. Gao, G. Yin, and T. Zhu*, "Tuning dynamics of the acousto-optical tunable SOA fiber laser," Journal of Lightwave Technology 40, 5967-5973 (2022).
(5) T. Lan, Z. Cao, L. G. Huang*, Y. Li, F. Li, L. Jiang, P. I. Iroegbu, L. Dang, Q. Gao, L. Liang, K. Mei, S. Fu, G. Yin, and T. Zhu*, "Ultra-narrow-linewidth DFB laser array based on dual-cavity feedback," Optics Express 30, 14617-14628 (2022).
(6) L. Jiang, T. Lan, L. Dang, J. Li, L. G. Huang*, L. Shi, G. Yin, and T. Zhu, "Ultra-narrow linewidth vertical-cavity surface-emitting laser based on external-cavity weak distributed feedback," Optics Express 30, 37519-37525 (2022).
(7) L. G. Huang*, B. Zheng, S. Liu, L. Dang, C. Zhang, T. Guan, L. Gao, W. Huang, G. Yin, and T. Zhu*, "Ultra-widely tunable acousto-optic add-drop filter based on acoustically-induced polarization conversion of single mode fiber," Journal of Lightwave Technology 40, 7396-7402 (2022).
(8) L. Dang, C. Zhang, B. Zheng, Y. Cao, L. G. Huang*, P. I. Iroegbu, T. Lan, J. Li, G. Yin, and T. Zhu, "Tens of hertz ultra-narrow linewidth fiber ring laser based on external weak distributed feedback," Optics Express 30, 34575-34585 (2022).
(9) Y. Li, L. G. Huang*, H. Han, L. Gao, Y. Cao, Y. Gong, W. Zhang, F. Gao, I. P. Ikechukwu, and T. Zhu, "Acousto-optic tunable ultrafast laser with vector-mode-coupling-induced polarization conversion," Photon. Res. 7, 798-805 (2019).
(10) H. Han, Y. Li, L. G. Huang*, L. Gao, W. Huang, M. Liu, and T. Zhu*, "Dual-wavelength narrowband all-fiber acousto-optic tunable bandpass filter based on dispersion-compensating fiber," Appl. Phys. Express 12, 122008 (2019).
(11) L. G. Huang, W. Zhang, Y. Li, H. Han, X. Li, P. Chang, F. Gao, G. Zhang, L. Gao, and T. Zhu*, "Acousto-optic tunable bandpass filter based on acoustic-flexural-wave-induced fiber birefringence," Opt. Lett. 43, 5431-5434 (2018).
(12) L. G. Huang*, P. Chang, X. Li, W. Zhang, Y. Li, F. Gao, F. Bo, L. Gao, W. Huang, M. Liu, and T. Zhu, "All-fiber narrow-linewidth ring laser with continuous and large tuning range based on microsphere resonator and fiber Bragg grating," Opt. Express 26, 32652-32661 (2018).
(13) L. G. Huang, J. Wang, W. Peng, W. Zhang, F. Bo, X. Yu, F. Gao, P. Chang, X. Song, G. Zhang, and J. Xu, "Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter," Optics Letters 41, 638-641 (2016).
(14) L. G. Huang, P. Chang, X. Song, W. Peng, W. Zhang, F. Gao, F. Bo, G. Zhang, and J. Xu, "Tunable in-fiber Mach-Zehnder interferometer driven by unique acoustic transducer and its application in tunable multi-wavelength laser," Optics Express 24, 2406-2412 (2016).
(15) L. G. Huang, X. Song, P. Chang, W. Peng, W. Zhang, F. Gao, F. Bo, G. Zhang, and J. Xu, "All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber," Optics Express 24, 7449-7455 (2016).
(16) L. G. Huang, W. Peng, F. Gao, F. Bo, G. Zhang, and J. Xu, "Mutually modulated cross-gain modulation with a considerable modulation wavenumber-interaction length product," Optics Express 23, 12004-12012 (2015).
联系方式
Email:lghuang@cqu.edu.cn
电 话:023-65111975
办公室:bat365在线登录网站A区主教学楼1124
英文简历:
Ligang Huang received his Ph.D. in Physics from Nankai University (China) in 2016. Since July 2016, he works as a lecturer (July 2016-December 2020) and associate professor (January 2021-now) at the College of Optoelectronic Engineering in Chongqing University, China. His research interests include narrow-linewidth lasers, laser parameter measurement, all-fiber acousto-optic tunable filters and whispering-gallery-mode tunable filters. He is author or co-author of more than 70 peer-reviewed journal papers in the field of narrow-linewidth lasers and tunable filters, which have been cited by more than 900 times. He explores the linewidth compression technology and parameter measurement methods of tunable lasers. With all-fiber acousto-optic tunable filters, he obtains wide tunable narrow-linewidth fiber lasers with a switching time of less than 1 ms, linewidth of less than 1 kHz, and tuning range of more than 100 nm. For swept frequency lasers, he proposes methods for measuring the transient frequency noise and linewidth. Based on fractional Fourier transform, he decomposes the swept laser energy into chirped signals, achieving accurate measurement of the intrinsic linewidth of high-speed swept lasers.
Contact information:
Address: Room 1124, Main building, College of optoelectronics, Chongqing University, 400044, Chongqing, China
Telephone: +86-023-65111975
Email: lghuang@cqu.edu.cn